
Barry Burd, PhD
Author of Beginning Programming
with Java For Dummies

Learn to:
• Combine several smaller programs to

create a bigger program

• Work with new libraries, closure, parallel
frameworks, and other new features

• Create basic Java objects and
reuse code

• Handle exceptions and events

Java®

5th Edition
Making Everything Easier!™

Visit the companion website at www.dummies.com/go/
javafordummies5e for lots of code samples that you can
use in your Java programs

 Open the book and find:

• Definitions of the many terms
you’ll encounter

• The grammar of Java

• How to save time by reusing code

• All about if, for, switch, and
while statements

• An overview of object-oriented
programming

• Hints about handling exceptions

• How to write Java applets

• Ten ways to avoid mistakes

Barry Burd, PhD, is a professor of mathematics and computer science at
Drew University. He frequently contributes to various online technology
resources, including JavaBoutique.com, and is the author of Ruby On Rails
For Dummies and the previous edition of this book.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-37173-2

Programming Languages/Java

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Jumpin’ Java! The bestselling
Java beginner’s book is now
fully updated for Java 7!
Java, the object-oriented programming language that works
on almost any computer, is what powers many of those cool
multimedia applications. Thousands have learned Java
programming from previous editions of this book — now
it’s your turn! Whether you’re new to programming or already
know a little Visual Basic or C++, you’ll be doing Java in a jiffy.

• The Java scoop — get an overview of Java, the enhancements in
Java 7, and the software tools you need

• Building blocks — learn to work with Java classes and methods
and add comments

• Get loopy — understand the value of variables and learn to control
program flow with loops or decision-making statements

• Class it up — explore classes and objects, constructors, and
subclasses, and see how to reuse your code

• A click ahead — experiment with variables and methods, use
arrays and collections to juggle values, and create programs
that respond to mouse clicks

Java
®

Burd

5th Edition

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/java Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

Java®

FOR

DUMmIES
‰

5TH EDITION

01_9780470371732-ffirs.indd i01_9780470371732-ffirs.indd i 7/6/11 6:57 PM7/6/11 6:57 PM

01_9780470371732-ffirs.indd ii01_9780470371732-ffirs.indd ii 7/6/11 6:57 PM7/6/11 6:57 PM

by Barry Burd

Java®

FOR

DUMmIES
‰

5TH EDITION

01_9780470371732-ffirs.indd iii01_9780470371732-ffirs.indd iii 7/6/11 6:57 PM7/6/11 6:57 PM

Java® For Dummies®, 5th Edition

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its af� liates in the United States and other countries, and may not be used without written permission. Java
is a registered trademark of Oracle America, Inc. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content
that is available in standard print versions of this book may appear or be packaged in all book formats.
If you have purchased a version of this book that did not include media that is referenced by or accom-
panies a standard print version, you may request this media by visiting http://booksupport.wiley.
com. For more information about Wiley products, visit us www.wiley.com.

Library of Congress Control Number: 2011932274

ISBN: 978-0-470-37173-2 (pbk); ISBN: 978-1-118-12830-5 (ebk); ISBN: 978-1-118-12831-2 (ebk);
ISBN: 978-1-118-12832-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_9780470371732-ffirs.indd iv01_9780470371732-ffirs.indd iv 7/6/11 6:57 PM7/6/11 6:57 PM

About the Author
Barry Burd received an M.S. degree in Computer Science at Rutgers University
and a Ph.D. in Mathematics at the University of Illinois. As a teaching assistant
in Champaign-Urbana, Illinois, he was elected � ve times to the university-wide
List of Teachers Ranked as Excellent by their Students.

Since 1980, Dr. Burd has been a professor in the Department of Mathematics
and Computer Science at Drew University in Madison, New Jersey. When he’s
not lecturing at Drew University, Dr. Burd leads training courses for profes-
sional programmers in business and industry. He has lectured at conferences
in the United States, Europe, Australia, and Asia. He is the author of several
articles and books, including Android Application Development All-in-One For
Dummies and Beginning Programming with Java For Dummies, both from Wiley
Publishing, Inc.

Dr. Burd lives in Madison, New Jersey, with his wife and two children. In his
spare time, he enjoys being a workaholic.

01_9780470371732-ffirs.indd v01_9780470371732-ffirs.indd v 7/6/11 6:57 PM7/6/11 6:57 PM

01_9780470371732-ffirs.indd vi01_9780470371732-ffirs.indd vi 7/6/11 6:57 PM7/6/11 6:57 PM

Dedication
for

Jennie, Sam, and Harriet,

Jennie and Benjamin, Katie and Abram,

and Basheva

01_9780470371732-ffirs.indd vii01_9780470371732-ffirs.indd vii 7/6/11 6:57 PM7/6/11 6:57 PM

01_9780470371732-ffirs.indd viii01_9780470371732-ffirs.indd viii 7/6/11 6:57 PM7/6/11 6:57 PM

Author’s Acknowledgments
When asked to list his talents, Siddhartha replied “I can think. I can wait. I can
fast.” Waiting is one of the three most important virtues. With this in mind, I
thank Mary Bednarek, Andy Cummings, Katie Feltman, Paul Levesque, Virginia
Sanders, and Brian Walls for their boundless patience during the creation of
this 5th edition.

01_9780470371732-ffirs.indd ix01_9780470371732-ffirs.indd ix 7/6/11 6:57 PM7/6/11 6:57 PM

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For
other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, out-
side the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media

Development

Senior Project Editor: Paul Levesque

Acquisitions Editor: Katie Feltman

Copy Editors: Brian Walls and Virginia Sanders

Technical Editor: John Mueller

Editorial Manager: Leah Cameron

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Associate Producers:
Josh Frank, Marilyn Hummel, Douglas Kuhn,
and Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinator: Sheree Montgomery

Layout and Graphics: Stephanie Jumper,
Corrie Socolovitch, Laura Westhuis

Proofreader: Toni Settle

Indexer: Potomac Indexing, LLC

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Kathy Nebenhaus, Vice President and Executive Publisher

Composition Services

Debbie Stailey, Director of Composition Services

01_9780470371732-ffirs.indd x01_9780470371732-ffirs.indd x 7/6/11 6:57 PM7/6/11 6:57 PM

Contents at a Glance
Introduction .. 1

Part I: Getting Started ... 9
Chapter 1: All about Java .. 11
Chapter 2: All about Software .. 23
Chapter 3: Using the Basic Building Blocks .. 39

Part II: Writing Your Own Java Programs 61
Chapter 4: Making the Most of Variables and Their Values 63
Chapter 5: Controlling Program Flow with Decision-Making Statements 93
Chapter 6: Controlling Program Flow with Loops ... 123

Part III: Working with the Big Picture:
Object-Oriented Programming 137
Chapter 7: Thinking in Terms of Classes and Objects .. 139
Chapter 8: Saving Time and Money: Reusing Existing Code 167
Chapter 9: Constructing New Objects ... 195

Part IV: Savvy Java Techniques 217
Chapter 10: Putting Variables and Methods Where They Belong 219
Chapter 11: Using Arrays and Collections to Juggle Values 249
Chapter 12: Looking Good When Things Take Unexpected Turns.......................... 281
Chapter 13: Sharing Names among the Parts of a Java Program 311
Chapter 14: Responding to Keystrokes and Mouse Clicks 333
Chapter 15: Writing Java Applets .. 351
Chapter 16: Using Java Database Connectivity .. 363

Part V: The Part of Tens ... 373
Chapter 17: Ten Ways to Avoid Mistakes ... 375
Chapter 18: Ten Websites for Java .. 381

Index .. 383

02_9780470371732-ftoc.indd xi02_9780470371732-ftoc.indd xi 7/6/11 6:57 PM7/6/11 6:57 PM

02_9780470371732-ftoc.indd xii02_9780470371732-ftoc.indd xii 7/6/11 6:57 PM7/6/11 6:57 PM

Table of Contents

Introduction ... 1
How to Use This Book ... 1
Conventions Used in This Book ... 2
What You Don’t Have to Read .. 2
Foolish Assumptions ... 3
How This Book Is Organized .. 4

Part I: Getting Started .. 4
Part II: Writing Your Own Java Programs ... 4
Part III: Working with the Big Picture: Object-Oriented

Programming .. 5
Part IV: Savvy Java Techniques ... 5
Part V: The Part of Tens .. 5

Icons Used in This Book ... 6
Where to Go from Here ... 7

Part I: Getting Started .. 9

Chapter 1: All about Java .11

What You Can Do with Java ... 12
Why You Should Use Java .. 13
Getting Perspective: Where Java Fits In ... 14
Object-Oriented Programming (OOP) ... 16

Object-oriented languages .. 16
Objects and their classes .. 18
What’s so good about an object-oriented language? 18
Re� ning your understanding of classes and objects....................... 21

What’s Next? ... 22

Chapter 2: All about Software .23

Quick-Start Instructions .. 23
What You Install on Your Computer ... 25

What is a compiler? ... 26
What is a Java virtual machine? ... 28
Developing Software .. 33
What is an Integrated Development Environment? 35

02_9780470371732-ftoc.indd xiii02_9780470371732-ftoc.indd xiii 7/6/11 6:57 PM7/6/11 6:57 PM

Java For Dummies, 5th Edition xiv
Chapter 3: Using the Basic Building Blocks .39

Speaking the Java Language ... 39
The grammar and the common names ... 40
The words in a Java program ... 41

Checking Out Java Code for the First Time .. 43
Understanding a Simple Java Program ... 44

The Java class .. 44
The Java method .. 45
The main method in a program ... 47
How you � nally tell the computer to do something 49
Curly braces ... 51

And Now, a Few Comments .. 53
Adding comments to your code ... 54
What’s Barry’s excuse? ... 58
Using comments to experiment with your code 58

Part II: Writing Your Own Java Programs 61

Chapter 4: Making the Most of Variables and Their Values 63

Varying a Variable ... 63
Assignment Statements .. 65
Understanding the Types of Values That Variables May Have 67
Displaying Text .. 70
Numbers without Decimal Points .. 70
Combining Declarations and Initializing Variables ..72
The Atoms: Java’s Primitive Types ... 73

The char type ... 74
The boolean type ... 76

The Molecules and Compounds: Reference Types 77
An Import Declaration .. 81
Creating New Values by Applying Operators .. 83

Initialize once, assign often .. 85
The increment and decrement operators .. 86
Assignment operators ... 91

Chapter 5: Controlling Program Flow with
Decision-Making Statements .93

Making Decisions (Java if Statements) ... 94
Guess the number .. 94
She controlled keystrokes from the keyboard 95
Creating randomness .. 97
The if statement ... 98
The double equal sign ... 99
Brace yourself .. 99
Indenting if statements in your code... 100
Elseless in Ifrica.. 101

02_9780470371732-ftoc.indd xiv02_9780470371732-ftoc.indd xiv 7/6/11 6:57 PM7/6/11 6:57 PM

xv Table of Contents

Forming Conditions with Comparisons and Logical Operators 102
Comparing numbers; comparing characters 102
Comparing objects ... 103
Importing everything in one fell swoop .. 106
Java’s logical operators .. 106
Vive les nuls! ... 109
(Conditions in parentheses) ... 111

Building a Nest ... 112
Choosing among Many Alternatives (Java switch Statements) 114

Your basic switch statement .. 115
To break or not to break ... 118
Along comes Java 7.. 120

Chapter 6: Controlling Program Flow with Loops 123

Repeating Instructions Over and Over Again
(Java while Statements) .. 124

Repeating a Certain Number of Times (Java for Statements) 127
The anatomy of a for statement ... 128
The world premiere of “Al’s All Wet” .. 129

Repeating Until You Get What You Want (Java do Statements)131
Reading a single character ... 134
File handling in Java .. 135
Variable declarations and blocks .. 136

Part III: Working with the Big Picture:
Object-Oriented Programming 137

Chapter 7: Thinking in Terms of Classes and Objects.139

De� ning a Class (What It Means to Be an Account) 140
A public class ... 142
Declaring variables and creating objects 142
Initializing a variable ... 145
Using an object’s � elds ... 145
One program; several classes .. 146

De� ning a Method within a Class (Displaying an Account) 146
An account that displays itself ... 147
The display method’s header ... 148

Sending Values to and from Methods (Calculating Interest) 149
Passing a value to a method ... 152
Returning a value from the getInterest method 155

Making Numbers Look Good .. 156
Hiding Details with Accessor Methods (Why You Shouldn’t

Micromanage a Bank Teller)... 160
Good programming .. 160
Public lives and private dreams: Making a � eld inaccessible 163
Enforcing rules with accessor methods.. 165

02_9780470371732-ftoc.indd xv02_9780470371732-ftoc.indd xv 7/6/11 6:57 PM7/6/11 6:57 PM

Java For Dummies, 5th Edition xvi
Chapter 8: Saving Time and Money: Reusing Existing Code 167

De� ning a Class (What It Means to Be an Employee) 168
The last word on employees .. 168
Putting your class to good use ... 170
Cutting a check ... 171

Working with Disk Files (A Brief Detour) ... 172
Storing data in a � le ... 173
Copying and pasting code .. 173
Reading from a � le ... 174
Who moved my � le? .. 177
Adding directory names to your � lenames 177
Reading a line at a time ... 178

De� ning Subclasses (What It Means to Be a Full-Time or
Part-Time Employee) ... 180

Creating a subclass .. 182
Creating subclasses is habit-forming .. 184

Using Subclasses ... 185
Making types match .. 187
The second half of the story... 188

Overriding Existing Methods (Changing the Payments for
Some of Your Employees) ... 189

A Java annotation .. 191
Using methods from classes and subclasses 192

Chapter 9: Constructing New Objects .195

De� ning Constructors (What It Means to Be a Temperature) 196
What is a temperature? ... 196
What is a temperature scale? (Java’s enum type) 197
Okay, so then what is a temperature? ... 197
What you can do with a temperature .. 199
Calling new Temperature(32.0): A case study 201
Some things never change .. 205

More Subclasses (Doing Something about the Weather) 206
Building better temperatures ... 206
Constructors for subclasses ... 208
Using all this stuff .. 209
The default constructor .. 210

A Constructor That Does More .. 211
Classes and methods from the Java API ... 214
The SuppressWarnings annotation ... 215

02_9780470371732-ftoc.indd xvi02_9780470371732-ftoc.indd xvi 7/6/11 6:57 PM7/6/11 6:57 PM

xvii Table of Contents

Part IV: Savvy Java Techniques 217

Chapter 10: Putting Variables and Methods Where They Belong.219

De� ning a Class (What It Means to Be a Baseball Player) 219
Another way to beautify your numbers .. 220
Using the Player class ... 221
Nine, count ’em, nine ... 223
Don’t get all GUI on me .. 224
Tossing an exception from method to method.............................. 225

Making Static (Finding the Team Average) .. 226
Why is there so much static? ... 228
Meet the static initializer .. 229
Displaying the overall team average ... 230
Static is old hat ... 232
Could cause static; handle with care .. 233

Experiments with Variables ... 234
Putting a variable in its place ... 235
Telling a variable where to go .. 237

Passing Parameters ... 240
Pass by value .. 240
Returning a result .. 242
Pass by reference ... 243
Returning an object from a method .. 245
Epilogue... 247

Chapter 11: Using Arrays and Collections to Juggle Values 249

Getting Your Ducks All in a Row .. 249
Creating an array in two easy steps .. 251
Storing values ... 252
Tab stops and other special things ... 255
Using an array initializer ... 255
Stepping through an array with the enhanced for loop 256
Searching .. 258

Arrays of Objects ... 261
Using the Room class .. 263
Yet another way to beautify your numbers 266
The conditional operator .. 267

Command Line Arguments ... 267
Using command line arguments in a Java program 269
Checking for the right number of command line arguments 271

02_9780470371732-ftoc.indd xvii02_9780470371732-ftoc.indd xvii 7/6/11 6:57 PM7/6/11 6:57 PM

Java For Dummies, 5th Edition xviii
Using Java Collections .. 272

Collection classes to the rescue .. 273
Using an ArrayList ... 274
Using generics (hot stuff!)... 277
Testing for the presence of more data .. 278

Chapter 12: Looking Good When Things Take Unexpected Turns 281

Handling Exceptions ... 282
The parameter in a catch clause.. 286
Exception types .. 287
Who’s going to catch the exception? .. 289
Java 7 and the multi-catch clause .. 295
Throwing caution to the wind .. 296
Doing useful things .. 297
Our friends, the good exceptions .. 298

Handle an Exception or Pass the Buck ... 299
Finishing the Job with a � nally Clause .. 304
Close Those Files! .. 306

How to close a � le .. 307
A try statement with resources ... 307

Chapter 13: Sharing Names among the Parts of a Java Program 311

Access Modi� ers .. 312
Classes, Access, and Multipart Programs .. 313

Members versus classes ... 313
Access modi� ers for members... 314
Putting a drawing on a frame ... 316
Directory structure .. 319
Making a frame ... 320

Sneaking Away from the Original Code .. 321
Default access... 323
Crawling back into the package ... 326

Protected Access ... 326
Putting non-subclasses in the same package 328

Access Modi� ers for Java Classes ... 330
Public classes ... 330
Nonpublic classes .. 331

Chapter 14: Responding to Keystrokes and Mouse Clicks333

Go On . . . Click That Button ... 333
Events and event handling ... 336
The Java interface .. 336
Threads of execution ... 338
The keyword this ... 339
Inside the actionPerformed method ... 340
The serialVersionUID .. 341

Responding to Things Other Than Button Clicks 341
Creating Inner Classes .. 347

02_9780470371732-ftoc.indd xviii02_9780470371732-ftoc.indd xviii 7/6/11 6:57 PM7/6/11 6:57 PM

xix Table of Contents

Chapter 15: Writing Java Applets .351

Applets 101 ... 351
Waiting to be called ... 353
A public class ... 353
The Java API (again) .. 354

Making Things Move ... 354
The methods in an applet ... 357
What to put into all these methods ... 358

Responding to Events in an Applet ... 359

Chapter 16: Using Java Database Connectivity 363

JDBC and Java DB .. 363
Creating Data .. 364

Using SQL commands .. 366
Connecting and disconnecting ... 367

Retrieving Data .. 369

Part V: The Part of Tens .. 373

Chapter 17: Ten Ways to Avoid Mistakes .375

Putting Capital Letters Where They Belong ... 375
Breaking Out of a switch Statement .. 376
Comparing Values with a Double Equal Sign ... 376
Adding Components to a GUI ... 377
Adding Listeners to Handle Events ... 377
De� ning the Required Constructors ... 377
Fixing Non-Static References .. 378
Staying within Bounds in an Array .. 378
Anticipating Null Pointers .. 378
Helping Java Find Its Files .. 379

Chapter 18: Ten Websites for Java .381

This Book’s Website .. 381
The Horse’s Mouth .. 381
Finding News, Reviews, and Sample Code ... 382
Looking for Java Jobs .. 382
Everyone’s Favorite Sites ... 382

Index ... 383

02_9780470371732-ftoc.indd xix02_9780470371732-ftoc.indd xix 7/6/11 6:57 PM7/6/11 6:57 PM

Java For Dummies, 5th Edition xx

02_9780470371732-ftoc.indd xx02_9780470371732-ftoc.indd xx 7/6/11 6:57 PM7/6/11 6:57 PM

Introduction

Java is good stuff. I’ve been using it for years. I like Java because it’s very
orderly. Almost everything follows simple rules. The rules can seem

intimidating at times, but this book is here to help you figure them out. So, if
you want to use Java and want an alternative to the traditional techie, soft-
cover book, sit down, relax, and start reading Java For Dummies, 5th Edition.

How to Use This Book
I wish I could say, “Open to a random page of this book and start writing Java
code. Just fill in the blanks and don’t look back.” In a sense, this is true. You
can’t break anything by writing Java code, so you’re always free to experiment.

But let me be honest. If you don’t understand the bigger picture, writing a
program is difficult. That’s true with any computer programming language —
not just Java. If you’re typing code without knowing what it’s about, and the
code doesn’t do exactly what you want it to do, you’re just plain stuck.

So, in this book, I divide Java programming into manageable chunks. Each
chunk is (more or less) a chapter. You can jump in anywhere you want —
Chapter 5, Chapter 10, or wherever. You can even start by poking around in
the middle of a chapter. I’ve tried to make the examples interesting without
making one chapter depend on another. When I use an important idea from
another chapter, I include a note to help you find your way around.

In general, my advice is as follows:

 ✓ If you already know something, don’t bother reading about it.

 ✓ If you’re curious, don’t be afraid to skip ahead. You can always sneak
a peek at an earlier chapter if you really need to do so.

03_9780470371732-intro.indd 103_9780470371732-intro.indd 1 7/6/11 6:57 PM7/6/11 6:57 PM

2 Java For Dummies, 5th Edition

Conventions Used in This Book
Almost every technical book starts with a little typeface legend, and Java For
Dummies, 5th Edition, is no exception. What follows is a brief explanation of
the typefaces used in this book:

 ✓ New terms are set in italics.

 ✓ If you need to type something that’s mixed in with the regular text, the
characters you type appear in bold. For example: “Type MyNewProject
in the text field.”

 ✓ You also see this computerese font. I use computerese for Java code,
filenames, web page addresses (URLs), on-screen messages, and other
such things. Also, if something you need to type is really long, it appears
in computerese font on its own line (or lines).

 ✓ You need to change certain things when you type them on your own
computer keyboard. For instance, I may ask you to type

public class Anyname

 which means that you type public class and then some name that you
make up on your own. Words that you need to replace with your own
words are set in italicized computerese.

What You Don’t Have to Read
Pick the first chapter or section that has material you don’t already know and
start reading there. Of course, you may hate making decisions as much as I
do. If so, here are some guidelines that you can follow:

 ✓ If you already know what kind of an animal Java is and know that you
want to use Java, skip Chapter 1 and go straight to Chapter 2. Believe
me, I won’t mind.

 ✓ If you already know how to get a Java program running, and you don’t
care what happens behind the scenes when a Java program runs, then
skip Chapter 2 and start with Chapter 3.

 ✓ If you write programs for a living but use any language other than C or
C++, start with Chapter 2 or 3. When you reach Chapters 5 and 6, you’ll
probably find them to be easy reading. When you get to Chapter 7, it’ll
be time to dive in.

03_9780470371732-intro.indd 203_9780470371732-intro.indd 2 7/6/11 6:57 PM7/6/11 6:57 PM

3 Introduction

 ✓ If you write C (not C++) programs for a living, start with Chapters 2, 3,
and 4 but just skim Chapters 5 and 6.

 ✓ If you write C++ programs for a living, glance at Chapters 2 and 3, skim
Chapters 4 through 6, and start reading seriously in Chapter 7. (Java is
a bit different from C++ in the way it handles classes and objects.)

 ✓ If you write Java programs for a living, come to my house and help me
write Java For Dummies, 6th Edition.

If you want to skip the sidebars and the Technical Stuff icons, please do. In
fact, if you want to skip anything at all, feel free.

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are
incorrect . . . well, buy the book anyway.

 ✓ I assume that you have access to a computer. Here’s the good news:
You can run the code in this book on almost any computer. The only
computers that you can’t use to run this code are ancient things that
are more than 10 years old (give or take a few years).

 ✓ I assume that you can navigate through your computer’s common
menus and dialog boxes. You don’t have to be a Windows, UNIX, or
Macintosh power user, but you should be able to start a program, find
a file, put a file into a certain directory . . . that sort of thing. Most of the
time, when you practice the stuff in this book, you’re typing code on
your keyboard, not pointing and clicking your mouse.

 On those rare occasions when you need to drag and drop, cut and paste,
or plug and play, I guide you carefully through the steps. But your com-
puter may be configured in any of several billion ways, and my instructions
may not quite fit your special situation. So, when you reach one of these
platform-specific tasks, try following the steps in this book. If the steps
don’t quite fit, consult a book with instructions tailored to your system.

 ✓ I assume that you can think logically. That’s all there is to program-
ming in Java — thinking logically. If you can think logically, you’ve got it
made. If you don’t believe that you can think logically, read on. You may
be pleasantly surprised.

03_9780470371732-intro.indd 303_9780470371732-intro.indd 3 7/6/11 6:57 PM7/6/11 6:57 PM

4 Java For Dummies, 5th Edition

 ✓ I make very few assumptions about your computer programming
experience (or your lack of such experience). In writing this book, I’ve
tried to do the impossible. I’ve tried to make the book interesting for
experienced programmers, yet accessible to people with little or no
programming experience. This means that I don’t assume any particular
programming background on your part. If you’ve never created a loop
or indexed an array, that’s okay.

 On the other hand, if you’ve done these things (maybe in Visual Basic,
COBOL, or C++), you’ll discover some interesting plot twists in Java. The
developers of Java took the best ideas in object-oriented programming,
streamlined them, reworked them, and reorganized them into a sleek,
powerful way of thinking about problems. You’ll find many new, thought-
provoking features in Java. As you find out about these features, many of
them will seem very natural to you. One way or another, you’ll feel good
about using Java.

How This Book Is Organized
This book is divided into subsections, which are grouped into sections,
which come together to make chapters, which are lumped finally into five
parts. (When you write a book, you get to know your book’s structure pretty
well. After months of writing, you find yourself dreaming in sections and
chapters when you go to bed at night.) The parts of the book are listed here.

Part I: Getting Started
This part is your complete, executive briefing on Java. It includes some
“What is Java?” material and a jump-start chapter — Chapter 3. In Chapter 3,
you visit the major technical ideas and dissect a simple program.

Part II: Writing Your Own Java Programs
Chapters 4 through 6 cover the fundamentals. These chapters describe the
things that you need to know so you can get your computer humming along.

03_9780470371732-intro.indd 403_9780470371732-intro.indd 4 7/6/11 6:57 PM7/6/11 6:57 PM

5 Introduction

If you’ve written programs in Visual Basic, C++, or any another language,
some of the material in Part II may be familiar to you. If so, you can skip some
sections or read this stuff quickly. But don’t read too quickly. Java is a little
different from some other programming languages, especially in the things
that I describe in Chapter 4.

Part III: Working with the Big Picture:
Object-Oriented Programming
Part III has some of my favorite chapters. This part covers the all-important
topic of object-oriented programming. In these chapters, you find out how to
map solutions to big problems. (Sure, the examples in these chapters aren’t
big, but the examples involve big ideas.) In bite-worthy increments, you dis-
cover how to design classes, reuse existing classes, and construct objects.

Have you read any of those books that explain object-oriented programming
in vague, general terms? I’m very proud to say that Java For Dummies, 5th
Edition, isn’t like that. In this book, I illustrate each concept with a simple-
yet-concrete program example.

Part IV: Savvy Java Techniques
If you’ve tasted some Java and want more, you can find what you need in
this part of the book. This part’s chapters are devoted to details — the things
that you don’t see when you first glance at the material. So, after you read the
earlier parts and write some programs on your own, you can dive in a little
deeper by reading Part IV.

Part V: The Part of Tens
The Part of Tens is a little Java candy store. In the Part of Tens, you can find
lists — lists of tips for avoiding mistakes, for finding resources, and for all
kinds of interesting goodies.

03_9780470371732-intro.indd 503_9780470371732-intro.indd 5 7/6/11 6:57 PM7/6/11 6:57 PM

6 Java For Dummies, 5th Edition

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer,
talking to myself. I say each sentence in my head. Most of the sentences
I mutter several times. When I have an extra thought, a side comment, or
something that doesn’t belong in the regular stream, I twist my head a little
bit. That way, whoever’s listening to me (usually nobody) knows that I’m off
on a momentary tangent.

Of course, in print, you can’t see me twisting my head. I need some other way
of setting a side thought in a corner by itself. I do it with icons. When you see
a Tip icon or a Remember icon, you know that I’m taking a quick detour.

Here’s a list of icons that I use in this book.

 A tip is an extra piece of information — something helpful that the other
books may forget to tell you.

 Everyone makes mistakes. Heaven knows that I’ve made a few in my time.
Anyway, when I think people are especially prone to make a mistake, I mark
it with a Warning icon.

 Question: What’s stronger than a Tip, but not as strong as a Warning?

Answer: A Remember icon.

 “If you don’t remember what such-and-such means, see blah-blah-blah,” or “For
more information, read blahbity-blah-blah.”

 This icon calls attention to useful material that you can find online. (You
don’t have to wait long to see one of these icons. I use one at the end of
this introduction!)

 Occasionally, I run across a technical tidbit. The tidbit may help you under-
stand what the people behind the scenes (the people who developed Java)
were thinking. You don’t have to read it, but you may find it useful. You may
also find the tidbit helpful if you plan to read other (more geeky) books
about Java.

03_9780470371732-intro.indd 603_9780470371732-intro.indd 6 7/6/11 6:57 PM7/6/11 6:57 PM

7 Introduction

Where to Go from Here
If you’ve gotten this far, you’re ready to start reading about Java. Think
of me (the author) as your guide, your host, your personal assistant. I do
everything I can to keep things interesting and, most importantly, help
you understand.

 If you like what you read, send me a note. My e-mail address, which I created
just for comments and questions about this book, is JavaForDummies@allmy
code.com. And don’t forget — for the latest updates, visit this book’s website.
The sites’ main address is www.allmycode.com/JavaForDummies, but you
can also get there by visiting www.dummies.com/go/javafordummies5e.

03_9780470371732-intro.indd 703_9780470371732-intro.indd 7 7/6/11 6:57 PM7/6/11 6:57 PM

8 Java For Dummies, 5th Edition

03_9780470371732-intro.indd 803_9780470371732-intro.indd 8 7/6/11 6:57 PM7/6/11 6:57 PM

Part I

Getting Started

04_9780470371732-pp01.indd 904_9780470371732-pp01.indd 9 7/6/11 6:57 PM7/6/11 6:57 PM

In this part . . .

Become acquainted with Java. Find out what Java is
all about and whether you do (or don’t) want to use

Java. If you’ve heard things about Java and aren’t sure
what they mean, the material in this part can help you. If
you’re staring at your computer, wondering how you’re
going to get a Java program running, this part has the
information that you need. Maybe you’ve told people that
you’re a Java expert, and now you need to do some seri-
ous bluffing. If so, this part of the book is your crash
course in Java. (Of course, if the word bluffing describes
you accurately, you may also want to pick up a copy of
Ethics For Dummies.)

04_9780470371732-pp01.indd 1004_9780470371732-pp01.indd 10 7/6/11 6:57 PM7/6/11 6:57 PM

Chapter 1

All about Java
In This Chapter
▶ What Java is

▶ Where Java came from

▶ Why Java is so cool

▶ How to orient yourself to object-oriented programming

Say what you want about computers. As far as I’m concerned, computers
are good for just two simple reasons:

 ✓ When computers do work, they feel no resistance, no stress, no bore-
dom, and no fatigue. Computers are our electronic slaves. I have my
computer working 24/7 doing calculations for SETI@home — the search
for extraterrestrial intelligence. Do I feel sorry for my computer because
it’s working so hard? Does the computer complain? Will the computer
report me to the National Labor Relations Board? No.

 I can make demands, give the computer its orders, and crack the whip.
Do I (or should I) feel the least bit guilty? Not at all.

 ✓ Computers move ideas, not paper. Not long ago, when you wanted to
send a message to someone, you hired a messenger. The messenger
got on his or her horse and delivered your message personally. The
message was on paper, parchment, a clay tablet, or whatever physical
medium was available at the time.

 This whole process seems wasteful now, but that’s only because you and
I are sitting comfortably in the electronic age. Messages are ideas, and
physical things like ink, paper, and horses have little or nothing to do with
real ideas; they’re just temporary carriers for ideas (even though people
used them to carry ideas for several centuries). Nevertheless, the ideas
themselves are paperless, horseless, and messengerless.

 The neat thing about computers is that they carry ideas efficiently. They
carry nothing but the ideas, a couple of photons, and a little electrical
power. They do this with no muss, no fuss, and no extra physical baggage.

05_9780470371732-ch01.indd 1105_9780470371732-ch01.indd 11 7/6/11 6:57 PM7/6/11 6:57 PM

12 Part I: Getting Started

When you start dealing efficiently with ideas, something very nice happens.
Suddenly, all the overhead is gone. Instead of pushing paper and trees, you’re
pushing numbers and concepts. Without the overhead, you can do things
much faster, and do things that are far more complex than ever before.

What You Can Do with Java
It would be so nice if all this complexity was free, but unfortunately, it isn’t.
Someone has to think hard and decide exactly what to ask the computer to
do. After that thinking, someone has to write a set of instructions for the
computer to follow.

Given the current state of affairs, you can’t write these instructions in English
or any other language that people speak. Science fiction is filled with stories
about people who say simple things to robots and get back disastrous, unex-
pected results. English and other such languages are unsuitable for communi-
cation with computers for several reasons:

 ✓ An English sentence can be misinterpreted. “Chew one tablet three
times a day until finished.”

 ✓ It’s difficult to weave a very complicated command in English. “Join
flange A to protuberance B, making sure to connect only the outermost
lip of flange A to the larger end of the protuberance B, while joining the
middle and inner lips of flange A to grommet C.”

 ✓ An English sentence has lots of extra baggage. “Sentence has
unneeded words.”

 ✓ English is difficult to interpret. “As part of this Publishing Agreement
between John Wiley & Sons, Inc. (‘Wiley’) and the Author (‘Barry Burd’),
Wiley shall pay the sum of one-thousand-two-hundred-fifty-seven dollars
and sixty-three cents ($1,257.63) to the Author for partial submittal of
Java For Dummies, 5th Edition (‘the Work’).”

To tell a computer what to do, you have to speak a special language and
write terse, unambiguous instructions in that language. A special language
of this kind is called a computer programming language. A set of instructions
written in such a language is called a program. When looked at as a big blob,
these instructions are called software or code. Here’s what code looks like
when it’s written in Java:

05_9780470371732-ch01.indd 1205_9780470371732-ch01.indd 12 7/6/11 6:57 PM7/6/11 6:57 PM

13 Chapter 1: All about Java

class PayBarry {
 public static void main(String args[]) {

 double checkAmount = 1257.63;
 System.out.print(“Pay to the order of “);
 System.out.print(“Dr. Barry Burd “);
 System.out.print(“$”);
 System.out.println(checkAmount);
 }
}

Why You Should Use Java
It’s time to celebrate! You’ve just picked up a copy of Java For Dummies,
5th Edition, and you’re reading Chapter 1. At this rate, you’ll be an expert
Java programmer in no time at all, so rejoice in your eventual success by
throwing a big party.

To prepare for the party, I’ll bake a cake. I’m lazy, so I’ll use a ready-to-bake
cake mix. Let me see . . . add water to the mix, and then add butter and
eggs . . . Hey, wait! I just looked at the list of ingredients. What’s MSG?
And what about propylene glycol? That’s used in antifreeze, isn’t it?

I’ll change plans and make the cake from scratch. Sure, it’s a little harder.
But that way, I get exactly what I want.

Computer programs work the same way. You can use somebody else’s
program or write your own. If you use somebody else’s program, you use
whatever you get. When you write your own program, you can tailor the
program especially for your needs.

Writing computer code is a big, worldwide industry. Companies do it, freelance
professionals do it, hobbyists do it; all kinds of people do it. A typical big com-
pany has teams, departments, and divisions that write programs for the com-
pany. But you can write programs for yourself or someone else, for a living or for
fun. In a recent estimate, the number of lines of code written each day by pro-
grammers in the United States alone exceeds the number of methane molecules
on the planet Jupiter.* Take almost anything that can be done with a computer.
With the right amount of time, you can write your own program to do it. (Of
course, the “right amount of time” may be very long, but that’s not the point.
Many interesting and useful programs can be written in hours or even minutes.)

* I made up this fact all by myself.

05_9780470371732-ch01.indd 1305_9780470371732-ch01.indd 13 7/6/11 6:57 PM7/6/11 6:57 PM

14 Part I: Getting Started

Getting Perspective: Where Java Fits In
Here’s a brief history of modern computer programming:

 ✓ 1954–1957: FORTRAN is developed.

 FORTRAN was the first modern computer programming language. For
scientific programming, FORTRAN is a real racehorse. Year after year,
FORTRAN is a leading language among computer programmers through-
out the world.

 ✓ 1959: COBOL is created.

 The letter B in COBOL stands for Business, and business is just what
COBOL is all about. The language’s primary feature is the processing of
one record after another, one customer after another, or one employee
after another.

 Within a few years after its initial development, COBOL became the most
widely used language for business data processing. Even today, COBOL
represents a large part of the computer programming industry.

 ✓ 1972: Dennis Ritchie at AT&T Bell Labs develops the C programming
language.

 The “look and feel” that you see in this book’s examples comes from
the C programming language. Code written in C uses curly braces, if
statements, for statements, and so on.

 In terms of power, you can use C to solve the same problems that you
can solve by using FORTRAN, Java, or any other modern programming
language. (You can write a scientific calculator program in COBOL,
but doing that sort of thing would feel really strange.) The difference
between one programming language and another isn’t power. The
difference is ease and appropriateness of use. That’s where the Java
language excels.

 ✓ 1986: Bjarne Stroustrup (again at AT&T Bell Labs) develops C++.

 Unlike its C language ancestor, the language C++ supports object-
oriented programming. This represents a huge step forward. (See
the next section in this chapter.)

 ✓ May 23, 1995: Sun Microsystems releases its first official version of the
Java programming language.

 Java improves upon the concepts in C++. Java’s “Write Once, Run
Anywhere” philosophy makes the language ideal for distributing code
across the Internet.

05_9780470371732-ch01.indd 1405_9780470371732-ch01.indd 14 7/6/11 6:57 PM7/6/11 6:57 PM

15 Chapter 1: All about Java

 Additionally, Java is a great general-purpose programming language.
With Java, you can write windowed applications, build and explore
databases, control handheld devices, and more. Within five short years,
the Java programming language had 2.5 million developers worldwide.
(I know. I have a commemorative T-shirt to prove it.)

 ✓ November 2000: The College Board announces that, starting in the
year 2003, the Computer Science Advanced Placement exams will
be based on Java.

 Wanna know what that snot-nosed kid living down the street is learning
in high school? You guessed it — Java.

 ✓ 2002: Microsoft introduces a new language named C#.

 Many of the C# language features come directly from features in Java.

 ✓ June 2004: Sys-Con Media* reports that the demand for Java program-
mers tops the demand for C++ programmers by 50 percent.

 And there’s more! The demand for Java programmers beats the com-
bined demand for C++ and C# programmers by 8 percent. Java program-
mers are more employable than VB (Visual Basic) programmers by a
whopping 190 percent.

 ✓ January 2010: Oracle Corporation purchases Sun Microsystems, bringing
Java technology into the Oracle family of products.

 ✓ June 2010: eWeek ranks Java first among its “Top 10 Programming
Languages to Keep You Employed.”**

 ✓ May 2011: Java runs on more than 1.1 billion desktop computers.***

 Java runs on 3 billion mobile phones.**** Java technology provides
interactive capabilities to all Blu-ray devices. Java is the most popu-
lar programming language in the TIOBE Programming Community
Index*****.

 Well, I’m impressed.

* Source: java.sys-con.com/node/48507

** Source: www.eweek.com/c/a/Application-Development/Top-10-Programming-
Languages-to-Keep-You-Employed-719257/

*** Source: java.com/en/about/

**** Source: java.com/en/about/

***** Source: www.tiobe.com/index.php/content/paperinfo/tpci/

05_9780470371732-ch01.indd 1505_9780470371732-ch01.indd 15 7/6/11 6:57 PM7/6/11 6:57 PM

16 Part I: Getting Started

Object-Oriented Programming (OOP)
It’s three in the morning. I’m dreaming about the history course that I failed
in high school. The teacher is yelling at me, “You have two days to study for
the final exam, but you won’t remember to study. You’ll forget and feel guilty,
guilty, guilty.”

Suddenly, the phone rings. I’m awakened abruptly from my deep sleep. (Sure,
I disliked dreaming about the history course, but I like being awakened even
less.) At first, I drop the telephone on the floor. After fumbling to pick it up,
I issue a grumpy, “Hello, who’s this?” A voice answers, “I’m a reporter from
The New York Times. I’m writing an article about Java and I need to know all
about the programming language in five words or less. Can you explain it?”

My mind is too hazy. I can’t think. So I say anything that comes to my mind
and then go back to sleep.

Come morning, I hardly remember the conversation with the reporter. In fact,
I don’t remember how I answered the question. Did I tell the reporter where
he could put his article about Java?

I put on my robe and rush to the front of my house’s driveway. As I pick up
the morning paper, I glance at the front page and see the two-inch headline:

Burd calls Java “A Great Object-Oriented Language”

Object-oriented languages
Java is object-oriented. What does that mean? Unlike languages, such as
FORTRAN, which focus on giving the computer imperative “Do this/Do that”
commands, object-oriented languages focus on data. Of course, object-
oriented programs still tell the computer what to do. They start, however,
by organizing the data, and the commands come later.

Object-oriented languages are better than “Do this/Do that” languages
because they organize data in a way that helps people do all kinds of things
with it. To modify the data, you can build on what you already have, rather
than scrap everything you’ve done and start over each time you need to
do something new. Although computer programmers are generally smart
people, they took awhile to figure this out. For the full history lesson, see
the sidebar “The winding road from FORTRAN to Java” (but I won’t make
you feel guilty if you don’t read it).

05_9780470371732-ch01.indd 1605_9780470371732-ch01.indd 16 7/6/11 6:57 PM7/6/11 6:57 PM

17 Chapter 1: All about Java

The winding road from FORTRAN to Java
In the mid-1950s, a team of people created a
programming language named FORTRAN. It
was a good language, but it was based on the
idea that you should issue direct, imperative
commands to the computer. “Do this, computer.
Then do that, computer.” (Of course, the com-
mands in a real FORTRAN program were much
more precise than “Do this” or “Do that.”)

In the years that followed, teams developed
many new computer languages, and many of
the languages copied the FORTRAN “Do this/Do
that” model. One of the more popular “Do this/Do
that” languages went by the one-letter name C.
Of course, the “Do this/Do that” camp had some
renegades. In languages named SIMULA and
Smalltalk, programmers moved the imperative
“Do this” commands into the background and
concentrated on descriptions of data. In these
languages, you didn’t come right out and say,
“Print a list of delinquent accounts.” Instead,
you began by saying, “This is what it means to
be an account. An account has a name and a
balance.” Then you said, “This is how you ask
an account whether it’s delinquent.” Suddenly,
the data became king. An account was a thing
that had a name, a balance, and a way of telling
you whether it was delinquent.

Languages that focus first on the data are
called object-oriented programming languages.
These object-oriented languages make excel-
lent programming tools. Here’s why:

 ✓ Thinking first about the data makes you a
good computer programmer.

 ✓ You can extend and reuse the descriptions
of data over and over again. When you
try to teach old FORTRAN programs new
tricks, however, the old programs show
how brittle they are. They break.

In the 1970s, object-oriented languages, such
as SIMULA and Smalltalk, were buried in

the computer hobbyist magazine articles. In
the meantime, languages based on the old
FORTRAN model were multiplying like rabbits.

So in 1986, a fellow named Bjarne Stroustrup cre-
ated a language named C++. The C++ language
became very popular because it mixed the old C
language terminology with the improved object-
oriented structure. Many companies turned their
backs on the old FORTRAN/C programming style
and adopted C++ as their standard.

But C++ had a flaw. Using C++, you could bypass
all the object-oriented features and write a pro-
gram by using the old FORTRAN/C programming
style. When you started writing a C++ accounting
program, you could take either fork in the road:

 ✓ You could start by issuing direct “Do this”
commands to the computer, saying the
mathematical equivalent of “Print a list of
delinquent accounts, and make it snappy.”

 ✓ You could take the object-oriented
approach and begin by describing what it
means to be an account.

Some people said that C++ offered the best of
both worlds, but others argued that the first
world (the world of FORTRAN and C) shouldn’t
be part of modern programming. If you gave
a programmer an opportunity to write code
either way, the programmer would too often
choose to write code the wrong way.

So in 1995, James Gosling of Sun Microsystems
created the language named Java. In creating
Java, Gosling borrowed the look and feel of
C++. But Gosling took most of the old “Do this/
Do that” features of C++ and threw them in the
trash. Then he added features that made the
development of objects smoother and easier. All
in all, Gosling created a language whose object-
oriented philosophy is pure and clean. When
you program in Java, you have no choice but to
work with objects. That’s the way it should be.

05_9780470371732-ch01.indd 1705_9780470371732-ch01.indd 17 7/6/11 6:57 PM7/6/11 6:57 PM

18 Part I: Getting Started

Objects and their classes
In an object-oriented language, you use objects and classes to organize
your data.

Imagine that you’re writing a computer program to keep track of the houses
in a new condominium development (still under construction). The houses
differ only slightly from one another. Each house has a distinctive siding
color, an indoor paint color, a kitchen cabinet style, and so on. In your
object-oriented computer program, each house is an object.

But objects aren’t the whole story. Although the houses differ slightly from
one another, all the houses share the same list of characteristics. For instance,
each house has a characteristic known as siding color. Each house has another
characteristic known as kitchen cabinet style. In your object-oriented program,
you need a master list containing all the characteristics that a house object can
possess. This master list of characteristics is called a class.

So there you have it. Object-oriented programming is misnamed. It should
really be called “programming with classes and objects.”

Now notice that I put the word classes first. How dare I do this! Well, maybe
I’m not so crazy. Think again about a housing development that’s under con-
struction. Somewhere on the lot, in a rickety trailer parked on bare dirt, is a
master list of characteristics known as a blueprint. An architect’s blueprint
is like an object-oriented programmer’s class. A blueprint is a list of charac-
teristics that each house will have. The blueprint says, “siding.” The actual
house object has gray siding. The blueprint says, “kitchen cabinet.” The
actual house object has Louis XIV kitchen cabinets.

The analogy doesn’t end with lists of characteristics. Another important
parallel exists between blueprints and classes. A year after you create the
blueprint, you use it to build ten houses. It’s the same with classes and
objects. First, the programmer writes code to describe a class. Then when
the program runs, the computer creates objects from the (blueprint) class.

So that’s the real relationship between classes and objects. The programmer
defines a class, and from the class definition, the computer makes
individual objects.

What’s so good about an
object-oriented language?
Based on the previous section’s story about home building, imagine that
you’ve already written a computer program to keep track of the building

05_9780470371732-ch01.indd 1805_9780470371732-ch01.indd 18 7/6/11 6:57 PM7/6/11 6:57 PM

19 Chapter 1: All about Java

instructions for houses in a new development. Then, the big boss decides
on a modified plan — a plan in which half the houses have three bedrooms,
and the other half have four.

If you use the old FORTRAN/C style of computer programming, your instruc-
tions look like this:

Dig a ditch for the basement.
Lay concrete around the sides of the ditch.
Put two-by-fours along the sides for the basement’s frame.
...

This would be like an architect creating a long list of instructions instead of
a blueprint. To modify the plan, you have to sort through the list to find the
instructions for building bedrooms. To make things worse, the instructions
could be scattered among pages 234, 394–410, 739, 10, and 2. If the builder
had to decipher other peoples’ complicated instructions, the task would be
ten times harder.

Starting with a class, however, is like starting with a blueprint. If you decide
to have both three- and four-bedroom houses, you can start with a blueprint
called the house blueprint that has a ground floor and a second floor, but
has no indoor walls drawn on the second floor. Then, you make two more
second-floor blueprints — one for the three-bedroom house and another for
the four-bedroom house. (You name these new blueprints the three-bedroom
house blueprint and the four-bedroom house blueprint.)

Your builder colleagues are amazed with your sense of logic and organiza-
tion, but they have concerns. They pose a question. “You called one of the
blueprints the ‘three-bedroom house’ blueprint. How can you do this if it’s
a blueprint for a second floor and not for a whole house?”

You smile knowingly and answer, “The three-bedroom house blueprint can
say, ‘For info about the lower floors, see the original house blueprint.’ That
way, the three-bedroom house blueprint describes a whole house. The four-
bedroom house blueprint can say the same thing. With this setup, we can
take advantage of all the work we already did to create the original house
blueprint and save lots of money.”

In the language of object-oriented programming, the three- and four-bedroom
house classes are inheriting the features of the original house class. You can
also say that the three- and four-bedroom house classes are extending the
original house class. (See Figure 1-1.)

The original house class is called the superclass of the three- and four-bedroom
house classes. In that vein, the three- and four-bedroom house classes are
subclasses of the original house class. Put another way, the original house
class is called the parent class of three- and four-bedroom house classes. The

05_9780470371732-ch01.indd 1905_9780470371732-ch01.indd 19 7/6/11 6:57 PM7/6/11 6:57 PM

20 Part I: Getting Started

three- and four-bedroom house classes are child classes of the original house
class. (See Figure 1-1.)

Needless to say, your homebuilder colleagues are jealous. A crowd of home-
builders is mobbing around you to hear about your great ideas. So, at that
moment, you drop one more bombshell: “By creating a class with subclasses,
we can reuse the blueprint in the future. If someone comes along and wants
a five-bedroom house, we can extend our original house blueprint by making
a five-bedroom house blueprint. We’ll never have to spend money for an
original house blueprint again.”

“But,” says a colleague in the back row, “what happens if someone wants a
different first-floor design? Do we trash the original house blueprint or start
scribbling all over the original blueprint? That’ll cost big bucks, won’t it?”

In a confident tone, you reply, “We don’t have to mess with the original house
blueprint. If someone wants a Jacuzzi in his living room, we can make a new,
small blueprint describing only the new living room and call this the Jacuzzi-
in-living-room house blueprint. Then, this new blueprint can refer to the origi-
nal house blueprint for info on the rest of the house (the part that’s not in the
living room).” In the language of object-oriented programming, the Jacuzzi-
in-living-room house blueprint still extends the original house blueprint. The
Jacuzzi blueprint is still a subclass of the original house blueprint. In fact, all
the terminology about superclass, parent class, and child class still applies.
The only thing that’s new is that the Jacuzzi blueprint overrides the living
room features in the original house blueprint.

Figure 1-1:
Terminology

in object-
oriented

programming.

house class

The three-bedroom house class
 extends the house class,
 inherits the features of the house class,
 is a subclass of the house class,
 is a child class of the house class.

The four-bedroom house class
 extends the house class,
 inherits the features of the house class,
 is a subclass of the house class,
 is a child class of the house class.

The house class is
 the superclass of the three-bedroom house class,
 the parent class of the three-bedroom house class,
 the superclass of the four-bedroom house class,
 the parent class of the four-bedroom house class.

Superclass Parent

three-bedroom
house class

four-bedroom
house class

Subclass ChildSubclass ChildSubclass ChildSubclass Child

05_9780470371732-ch01.indd 2005_9780470371732-ch01.indd 20 7/6/11 6:57 PM7/6/11 6:57 PM

21 Chapter 1: All about Java

In the days before object-oriented languages, the programming world experi-
enced a crisis in software development. Programmers wrote code, then discov-
ered new needs, and then had to trash their code and start from scratch. This
happened over and over again because the code that the programmers were
writing couldn’t be reused. Object-oriented programming changed all this for
the better (and, as Burd said, Java is “A Great Object-Oriented Language”).

Refining your understanding
of classes and objects
When you program in Java, you work constantly with classes and objects.
These two ideas are really important. That’s why, in this chapter, I hit you
over the head with one analogy after another about classes and objects.

Close your eyes for a minute and think about what it means for something
to be a chair. . . .

A chair has a seat, a back, and legs. Each seat has a shape, a color, a degree
of softness, and so on. These are the properties that a chair possesses. What
I describe is chairness — the notion of something being a chair. In object-
oriented terminology, I’m describing the Chair class.

Now peek over the edge of this book’s margin and take a minute to look
around your room. (If you’re not sitting in a room right now, fake it.)

Several chairs are in the room, and each chair is an object. Each of these
objects is an example of that ethereal thing called the Chair class. So that’s
how it works — the class is the idea of chairness, and each individual chair
is an object.

 A class isn’t quite a collection of things. Instead, a class is the idea behind
a certain kind of thing. When I talk about the class of chairs in your room,
I’m talking about the fact that each chair has legs, a seat, a color, and so on.
The colors may be different for different chairs in the room, but that doesn’t
matter. When you talk about a class of things, you’re focusing on the proper-
ties that each of the things possesses.

It makes sense to think of an object as being a concrete instance of a class.
In fact, the official terminology is consistent with this thinking. If you write a
Java program in which you define a Chair class, each actual chair (the chair
that you’re sitting on, the empty chair right next to you, and so on) is called
an instance of the Chair class.

05_9780470371732-ch01.indd 2105_9780470371732-ch01.indd 21 7/6/11 6:57 PM7/6/11 6:57 PM

22 Part I: Getting Started

Here’s another way to think about a class. Imagine a table displaying all three
of your bank accounts. (See Table 1-1.)

Table 1-1 A Table of Accounts

Account Number Type Balance

16-13154-22864-7 Checking 174.87

1011 1234 2122 0000 Credit -471.03

16-17238-13344-7 Savings 247.38

Think of the table’s column headings as a class, and think of each row of the
table as an object. The table’s column headings describe the Account class.

According to the table’s column headings, each account has an account
number, a type, and a balance. Rephrased in the terminology of object-
oriented programming, each object in the Account class (that is, each
instance of the Account class) has an account number, a type, and a bal-
ance. So, the bottom row of the table is an object with account number
16-17238-13344-7. This same object has type Savings and a balance of
247.38. If you opened a new account, you would have another object,
and the table would grow an additional row. The new object would be
an instance of the same Account class.

What’s Next?
This chapter is filled with general descriptions of things. A general descrip-
tion is good when you’re just getting started, but you don’t really understand
things until you get to know some specifics. That’s why the next several
chapters deal with specifics.

So please, turn the page. The next chapter can’t wait for you to read it.

05_9780470371732-ch01.indd 2205_9780470371732-ch01.indd 22 7/6/11 6:57 PM7/6/11 6:57 PM

Chapter 2

All about Software
In This Chapter
▶ Understanding the roles of the software development tools

▶ Selecting the version of Java that’s right for you

▶ Preparing to write and run Java programs

The best way to get to know Java is to do Java. When you’re doing
Java, you’re writing, testing, and running your own Java programs.

This chapter gets you ready to do Java by describing the general software
setup — the software that you must have on your computer whether you
run Windows, Mac, Linux, or Joe’s Private Operating System. This chapter
doesn’t describe the specific setup instructions for Windows, for a Mac, or
for any other system.

 For setup instructions that are specific to your system, visit this book’s website.

Quick-Start Instructions
If you’re a seasoned veteran of computers and computing (whatever that
means), and if you’re too jumpy to get detailed instructions from this book’s
website, you can try installing the required software by following this sec-
tion’s general instructions. The instructions work for many computers, but
not for all computers. And this section provides no detailed steps, no if-this-
then-do-that alternatives, and no this-works-but-you’re-better-off-doing-
something-else tips.

To prepare your computer for writing Java programs, follow these steps:

06_9780470371732-ch02.indd 2306_9780470371732-ch02.indd 23 7/6/11 6:57 PM7/6/11 6:57 PM

24 Part I: Getting Started

 ✓ Visit Java.com.

 Follow the instructions at http://java.com/en to download and
install Java.

 ✓ Optionally, visit java.sun.com/javase/downloads/.

 Follow the instructions at that website to download and install the
Java SE documentation (also known as the Javadoc pages or the
Java SE API Docs).

 ✓ Visit Eclipse.org.

 Follow the instructions at http://eclipse.org/downloads/
to download and install Eclipse.

 Eclipse’s download page offers several different packages, including
Eclipse Classic, Eclipse for Java EE, Eclipse for JavaScript, and others.
To run this book’s examples, you need a relatively small Eclipse
package — the Eclipse IDE for Java Developers.

 ✓ Test your installed software.

 • Launch Eclipse.

 • In Eclipse, create a new Java project.

 • Within the Java project, create a new Java class named Displayer.

 • Edit the new Displayer.java file by typing the code from
Listing 3-1 (the first code listing in Chapter 3). Type the code in
Eclipse’s editor pane.

 • Run Displayer.java and check to make sure that the run’s
output reads You’ll love Java!.

That’s it! But remember, not everyone (computer geek or not) can follow
these skeletal instructions flawlessly. So you have several alternatives:

 ✓ Visit this book’s website.

 Do not pass “go.” Do not try this section’s quick-start instructions. Follow
the more detailed instructions that you find at www.allmycode.com/
JavaForDummies.

 ✓ Try this section’s quick-start instructions.

 You can’t hurt anything by trying. If you accidentally install the wrong
software, you can probably leave the wrong software on your com-
puter. (You don’t have to uninstall it.) If you’re not sure whether you’ve
installed the software correctly, you can always fall back on my web-
site’s detailed instructions.

 ✓ E-mail your questions to me at JavaForDummies@allmycode.com.

 I like getting e-mail from readers.

06_9780470371732-ch02.indd 2406_9780470371732-ch02.indd 24 7/6/11 6:57 PM7/6/11 6:57 PM

25 Chapter 2: All about Software

What You Install on Your Computer
I once met a tool and die maker. He used tools to make tools (and dies). I
was happy to meet him because I knew that, one day, I’d make an analogy
between computer programmers and tool and die makers.

A computer programmer uses existing programs as tools to create new pro-
grams. The existing programs and new programs might perform very differ-
ent kinds of tasks. For example, a Java program (a program that you create)
might keep track of a business’s customers. To create that customer-tracking
program, you might use an existing program that looks for errors in your
Java code. This general-purpose error-finding program can find errors in
any kind of Java code — customer-tracking code, weather-predicting code,
gaming code, or the code for an app on your mobile phone.

So how many tools do you need for creating Java programs? As a novice,
you need three tools.

 ✓ You need a compiler.

 A compiler takes the Java code that you write and turns that code into
something that can run on your computer.

 ✓ You need a Java virtual machine (JVM).

 A Java virtual machine runs your code (and other peoples’ Java code)
on your computer.

 ✓ You need an integrated development environment (IDE).

 An integrated development environment helps you manage your Java
code and provides convenient ways for you to write, compile, and run
your code.

The World Wide Web has free, downloadable versions of each of these tools.
For example, the quick-start instructions near the beginning of this chapter
advise you to visit Java.com and Eclipse.org. By clicking a button on a Java.
com page, you install a Java virtual machine on your computer. At Eclipse.
org, you download the Eclipse integrated development environment, which
comes with its own built-in Java compiler. (You get two of the three tools in
one download. Not bad!)

The rest of this chapter describes compilers, JVMs, and IDEs.

 The rest of this chapter provides background information about software
you need on your computer. But the chapter contains absolutely no detailed
instructions to help you install the software. For detailed instructions, visit
this book’s website.

06_9780470371732-ch02.indd 2506_9780470371732-ch02.indd 25 7/6/11 6:57 PM7/6/11 6:57 PM

26 Part I: Getting Started

What is a compiler?
“A compiler takes the Java code that you write, and turns that code into
something that can run on your computer.”

–Barry Burd, Java For Dummies, 5th Edition

You’re a human being. (Sure, every rule has exceptions. But if you’re reading
this book, you’re probably human.) Anyway, humans can write and compre-
hend the code in Listing 2-1.

Listing 2-1: Looking for a Vacant Room

// This is part of a Java program
// (not a complete Java program).
roomNum = 1;
while (roomNum < 100) {
 if (guests[roomNum] == 0) {
 out.println(“Room “ + roomNum
 + “ is available.”);
 exit(0);
 } else {
 roomNum++;
 }
}
out.println(“No vacancy”);

The Java code in Listing 2-1 checks for vacancies in a small hotel (a hotel
with room numbers 1 to 99). You can’t run the code in Listing 2-1 without
adding several additional lines. But here in Chapter 2, those additional lines
aren’t important. What’s important is that, by staring at the code, squinting a
bit, and looking past all the code’s strange punctuation, you can see what the
code is trying to do:

Set the room number to 1.
As long as the room number is less than 100,
 Check the number of guests in the room.
 If the number of guests in the room is 0, then
 report that the room is available,
 and stop.
 Otherwise,
 prepare to check the next room by
 adding 1 to the room number.
If you get to the non-existent room number 100, then
 report that there are no vacancies.

If you don’t see the similarities between Listing 2-1 and its English equivalent,
don’t worry. You’re reading Java For Dummies, 5th Edition, and like most

06_9780470371732-ch02.indd 2606_9780470371732-ch02.indd 26 7/6/11 6:57 PM7/6/11 6:57 PM

27 Chapter 2: All about Software

human beings, you can learn to read and write the code in Listing 2-1. The
code in Listing 2-1 is called Java source code.

So here’s the catch: Computers aren’t human beings. Computers don’t nor-
mally follow instructions like the instructions in Listing 2-1. That is, comput-
ers don’t follow Java source code instructions. Instead, computers follow
cryptic instructions like the ones in Listing 2-2:

Listing 2-2: The Instructions of Listing 2-1 Translated into Java Bytecode

aload_0
iconst_1
putfield Hotel/roomNum I
goto 32
aload_0
getfield Hotel/guests [I
aload_0
getfield Hotel/roomNum I
iaload
ifne 26
getstatic java/lang/System/out Ljava/io/PrintStream;
new java/lang/StringBuilder
dup
ldc “Room “
invokespecial java/lang/StringBuilder/<init>(Ljava/lang/String;)V
aload_0
getfield Hotel/roomNum I
invokevirtual java/lang/StringBuilder/append(I)Ljava/lang/StringBuilder;
ldc ” is available.”
invokevirtual
 java/lang/StringBuilder/append(Ljava/lang/String;)Ljava/lang/StringBuilder;
invokevirtual java/lang/StringBuilder/toString()Ljava/lang/String;
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V
iconst_0
invokestatic java/lang/System/exit(I)V
goto 32
aload_0
dup
getfield Hotel/roomNum I
iconst_1
iadd
putfield Hotel/roomNum I
aload_0
getfield Hotel/roomNum I
bipush 100
if_icmplt 5
getstatic java/lang/System/out Ljava/io/PrintStream;
ldc ”No vacancy”
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V
return

06_9780470371732-ch02.indd 2706_9780470371732-ch02.indd 27 7/6/11 6:57 PM7/6/11 6:57 PM

28 Part I: Getting Started

The instructions in Listing 2-2 aren’t Java source code instructions. They’re
Java bytecode instructions. When you write a Java program, you write source
code instructions (like the instructions in Listing 2-1). After writing the
source code, you run a program (that is, you apply a tool) to your source
code. The program is a compiler. The compiler translates your source code
instructions into Java bytecode instructions. In other words, the compiler
takes code that you can write and understand (like the code in Listing 2-1)
and translates your code into code that a computer can execute (like the
code in Listing 2-2).

 You might put your source code in a file named Hotel.java. If so, the com-
piler probably puts the Java bytecode in another file named Hotel.class.
Normally, you don’t bother looking at the bytecode in the Hotel.class file.
In fact, the compiler doesn’t encode the Hotel.class file as ordinary text,
so you can’t examine the bytecode with an ordinary editor. If you try to open
Hotel.class with Notepad, TextEdit, KWrite, or even Microsoft Word, you’ll
see nothing but dots, squiggles, and other gobbledygook. To create Listing 2-2,
I had to apply yet another tool to my Hotel.class file. That tool displays a
text-like version of a Java bytecode file. I used Ando Saabas’s Java Bytecode
Editor (www.cs.ioc.ee/~ando/jbe).

 No one (except for a few crazy developers in some isolated labs in faraway
places) writes Java bytecode. You run software (a compiler) to create Java
bytecode. The only reason to look at Listing 2-2 is to understand what a hard
worker your computer is.

What is a Java virtual machine?
“A Java virtual machine runs your code (and other peoples’ Java code)
on your computer.”

–Barry Burd, Java For Dummies, 5th Edition

In the earlier “What is a compiler?” section, I make a big fuss about comput-
ers following instructions like the ones in Listing 2-2. As fusses go, it’s a very
nice fuss. But if you don’t read every fussy word, you may be misguided. The
exact wording is “. . . computers follow cryptic instructions like the ones in
Listing 2-2.” The instructions in Listing 2-2 are a lot like instructions that a
computer can execute, but generally, computers don’t execute Java bytecode
instructions. Instead, each kind of computer processor has its own set of
executable instructions, and each computer operating system uses the
processor’s instructions in a slightly different way.

06_9780470371732-ch02.indd 2806_9780470371732-ch02.indd 28 7/6/11 6:57 PM7/6/11 6:57 PM

29 Chapter 2: All about Software

Here’s a hypothetical situation: Imagine that you run the Linux operating
system on a computer that has an old Pentium processor. Your friend runs
Linux on a computer with a different kind of processor — a PowerPC proces-
sor. (In the 1990s, Intel Corporation made Pentium processors, and IBM made
PowerPC processors.)

Listing 2-3 contains a set of instructions to display Hello world! on the
computer screen.* The instructions work on a Pentium processor running
the Linux operating system.

Listing 2-3: A Simple Program for a Pentium Processor

.data

msg:
 .ascii “Hello, world!\n”
 len = . - msg

.text

 .global _start

_start:

 movl $len,%edx
 movl $msg,%ecx
 movl $1,%ebx
 movl $4,%eax
 int $0x80

 movl $0,%ebx
 movl $1,%eax
 int $0x80

Listing 2-4 contains another set of instructions to display Hello world! on
the screen.** The instructions in Listing 2-4 work on a PowerPC processor
running Linux.

* I paraphrase these Intel instructions from Konstantin Boldyshev’s Linux
Assembly HOWTO (tldp.org/HOWTO/Assembly-HOWTO/hello.html).

** I paraphrase the PowerPC code from Hollis Blanchard’s PowerPC Assembly
page (www.ibm.com/developerworks/library/l-ppc). Hollis also reviewed and
critiqued this “What is a Java virtual machine?” section for me. Thank you, Hollis.

06_9780470371732-ch02.indd 2906_9780470371732-ch02.indd 29 7/6/11 6:57 PM7/6/11 6:57 PM

30 Part I: Getting Started

Listing 2-4: A Simple Program for a PowerPC Processor

.data

msg:
 .string “Hello, world!\n”
 len = . - msg

.text

 .global _start
_start:

 li 0,4
 li 3,1

 lis 4,msg@ha
 addi 4,4,msg@l
 li 5,len
 sc

 li 0,1
 li 3,1
 sc

The instructions in Listing 2-3 run smoothly on a Pentium processor. But these
instructions mean nothing to a PowerPC processor. Likewise, the instruc-
tions in Listing 2-4 run nicely on a PowerPC, but these same instructions are
complete gibberish to a computer with a Pentium processor. So your friend’s
PowerPC software might not be available on your computer. And your Intel
computer’s software might not run at all on your friend’s computer.

Now go to your cousin’s house. Your cousin’s computer has a Pentium pro-
cessor (just like yours), but your cousin’s computer runs Windows instead
of Linux. What does your cousin’s computer do when you feed it the Pentium
code in Listing 2-3? It screams, “Not a valid Win32 application” or “Windows
can’t open this file.” What a mess!

Java bytecode creates order from all this chaos. Java bytecode is something
like the code in Listings 2-3 and 2-4, but Java bytecode isn’t specific to one
kind of processor or to one operating system. Instead, a set of Java bytecode
instructions runs on any computer. If you write a Java program, and compile
that Java program into bytecode, then your computer can run the bytecode,
your friend’s computer can run the bytecode, your grandmother’s supercom-
puter can run the bytecode, and with any luck, your tiny, little cellphone can
run the bytecode.

06_9780470371732-ch02.indd 3006_9780470371732-ch02.indd 30 7/6/11 6:57 PM7/6/11 6:57 PM

31 Chapter 2: All about Software

 For a look at some Java bytecode, see Listing 2-2. But remember, you never
have to write or decipher Java bytecode. Writing bytecode is the compiler’s
job. Deciphering bytecode is the Java virtual machine’s job.

With Java, you can take a bytecode file that you created with a Windows com-
puter, copy the bytecode to who-knows-what kind of computer, and then run
the bytecode with no trouble at all. That’s one of the many reasons why Java
has become popular so quickly. This outstanding feature, which gives you the
ability to run code on many different kinds of computers, is called portability.

What makes Java bytecode so versatile? This fantastic universality enjoyed by
Java bytecode programs comes from the Java virtual machine. The Java virtual
machine is one of those three tools that you must have on your computer.

Imagine that you’re the Windows representative to the United Nations
Security Council. (See Figure 2-1.) The Macintosh representative is seated
to your right, and the Linux representative is on your left. (Naturally, you
don’t get along with either of these people. You’re always cordial to one
another, but you’re never sincere. What do you expect? It’s politics!) The
distinguished representative from Java is at the podium. The Java represen-
tative is speaking in bytecode, and neither you nor your fellow ambassadors
(Mac and Linux) understand a word of Java bytecode.

Figure 2-1:
An

imaginary
meeting

of the UN
Security
Council.

compiler

Java virtual
machines

Mac code

Windows code

Linux code

bytecode

Java
source
code

06_9780470371732-ch02.indd 3106_9780470371732-ch02.indd 31 7/6/11 6:57 PM7/6/11 6:57 PM

32 Part I: Getting Started

What on earth is Java 2?
If you poke around the web looking for Java
tools, you find things with all kinds of strange
names. You find the Java Development Kit, the
Software Development Kit, the Java Runtime
Environment, and other confusing names.

 ✓ The names Java Development Kit (JDK) and
Software Development Kit (SDK) stand for
different versions of the same toolset —
a toolset whose key component is a Java
compiler.

 ✓ The name Java Runtime Environment (JRE)
stands for a toolset whose key component
is a Java virtual machine.

 It’s not bad to have the JRE on your com-
puter, but to write new Java programs, you
need something more powerful than the
JRE. You need the JDK.

The numbering of Java versions is also confus-
ing. Instead of “Java 1,” “Java 2,” and “Java 3,”
the numbering of Java versions winds through
an obstacle course. Here’s how it works:

 ✓ Java JDK 1.0 (1996)

 ✓ Java JDK 1.1 (1997)

 ✓ Java 2 SDK, 1.2 (1998)

 In 1998, Sun Microsystems adds an additional
“2” and changes “JDK” (Java Development
Kit) to “SDK” (Software Development Kit)

 ✓ Java 2 SDK, 1.3 (2000)

 ✓ Java 2 SDK, 1.4 (2002)

 ✓ Java 2 JDK, 5.0 (2004)

 In 2004, Sun reverts to ”JDK” and partially
gives up on the silly 1.x numbering scheme. I
say ”partially” because, in addition to being
”Java 2”, the JDK has two version numbers.
The product version number is 5.0, and the
developer version number is 1.5.0. So when
you refer to the JDK, you can call it “ver-
sion 5.0” or “version 1.5.0” depending on the
kinds of people you want to impress.

 ✓ Java 6 JDK (2006)

 In 2006, Sun drops the unnecessary “2” and
gets rid of the “.0,” too. Of course, the old
developer version numbering never dies. In
addition to being “Java 6.” this release also
has the name “Java 1.6.0.”

 ✓ Java 6 Update 1 (2007)

 Sun continues with updates 2, 3, 4, and so
on. Early in 2010, Oracle Corporation pur-
chases Sun Microsystems. Oracle releases
updates 19, 20, 21 (and so on) until . . .

 ✓ Java 7 (2011)

 Undoubtedly, updates 1, 2, 3, and others
follow the initial Java 7 release.

Most of the programs in this book run only with
Java 5.0, or later. They do not run with any ver-
sion earlier than Java 5.0. Particularly, they
don’t run with Java 1.4 or Java 1.4.2. A few of
this book’s examples don’t run with Java 6 or
lower. But don’t worry too much about Java
version numbers. Java 5.0 or 6 is better than no
Java at all. You can learn a lot about Java with-
out having the latest Java version.

But each of you has an interpreter. Your interpreter translates from byte-
code to Windows while the Java representative speaks. Another interpreter
translates from bytecode to Macintosh-ese. And a third interpreter translates
bytecode into Linux-speak.

06_9780470371732-ch02.indd 3206_9780470371732-ch02.indd 32 7/6/11 6:57 PM7/6/11 6:57 PM

33 Chapter 2: All about Software

Think of your interpreter as a virtual ambassador. The interpreter doesn’t
really represent your country, but the interpreter performs one of the impor-
tant tasks that a real ambassador performs. The interpreter listens to byte-
code on your behalf. The interpreter does what you would do if your native
language was Java bytecode. The interpreter pretends to be the Windows
ambassador, and sits through the boring bytecode speech, taking in every
word, and processing each word in some way or other.

You have an interpreter — a virtual ambassador. In the same way, a Windows
computer runs its own bytecode interpreting software. That software is the
Java virtual machine.

A Java virtual machine is a proxy, an errand boy, a go-between. The JVM
serves as an interpreter between Java’s run-anywhere bytecode and your
computer’s own system. While it runs, the JVM walks your computer through
the execution of bytecode instructions. The JVM examines your bytecode, bit
by bit, and carries out the instructions described in the bytecode. The JVM
interprets bytecode for your Windows system, your Mac, or your Linux box,
or for whatever kind of computer you’re using. That’s a good thing. It’s what
makes Java programs more portable than programs in any other language.

Developing Software
“All this has happened before, and all this will happen again.”

–Battlestar Galactica, 2003-2009, NBC Universal

When you create a Java program, you repeat the same steps over and over
again. Figure 2-2 illustrates the cycle.

Figure 2-2:
Developing

a Java
program.

You write code You compile
the code

You modify
the code

You run
the code

06_9780470371732-ch02.indd 3306_9780470371732-ch02.indd 33 7/6/11 6:57 PM7/6/11 6:57 PM

34 Part I: Getting Started

First, you write a program. After writing the first draft, you repeatedly com-
pile, run, and modify the program. With a little experience, the compile and
run steps become very easy. In many cases, one mouse click starts the
compilation or the run.

However, writing the first draft and modifying the code are not one-click
tasks. Developing code requires time and concentration.

 Never be discouraged when the first draft of your code doesn’t work. For that
matter, never be discouraged when the twenty-fifth draft of your code doesn’t
work. Rewriting code is one of the most important things you can do (aside
from ensuring world peace).

 For detailed instructions on compiling and running Java programs, visit this
book’s website.

When people talk about writing programs, they use the wording in Figure 2-2.
They say, “You compile the code” and “You run the code.” But the “you” isn’t
always accurate, and the “code” differs slightly from one part of the cycle to
the next. Figure 2-3 describes the cycle from Figure 2-2 in a bit more detail.

 For most people’s needs, Figure 2-3 contains too much information. If I click a
Run icon, I don’t have to remember that the computer runs code on my behalf.
And for all I care, the computer can run my original Java code or some bytecode
knock-off of my original Java code. The details in Figure 2-3 aren’t important.
The only use for Figure 2-3 is to help you if the loose wording in Figure 2-2
confuses you. If Figure 2-2 doesn’t confuse you, then ignore Figure 2-3.

Figure 2-3:
Who does
what with

which
code?

You write Java
source code

Upon your command,
the computer compiles

the source code
(creating bytecode)

You modify the
Java source code

Upon your command, the
computer runs the bytecode

06_9780470371732-ch02.indd 3406_9780470371732-ch02.indd 34 7/6/11 6:57 PM7/6/11 6:57 PM

35 Chapter 2: All about Software

What is an Integrated Development
Environment?

“An integrated development environment helps you manage your Java code
and provides convenient ways for you to write, compile, and run your code.”

–Barry Burd, Java For Dummies, 5th Edition

In the olden days, writing and running a Java program involved opening
several windows — a window for typing the program, another window for
running the program, and maybe a third window to keep track of all the code
that you’ve written. (See Figure 2-4.)

An integrated development environment seamlessly combines all this func-
tionality into one well-organized application. (See Figure 2-5.)

Java has its share of integrated development environments. Some of the
more popular products include Eclipse, IntelliJ IDEA, and NetBeans. Some
fancy environments even have drag-and-drop components so that you can
design your graphical interface visually. (See Figure 2-6.)

Figure 2-4:
Developing

code
without an
integrated

development
environment.

06_9780470371732-ch02.indd 3506_9780470371732-ch02.indd 35 7/6/11 6:57 PM7/6/11 6:57 PM

36 Part I: Getting Started

Figure 2-5:
Developing

code with
the Eclipse
integrated

development
environment.

Figure 2-6:
Using the

drag-and-
drop Swing
GUI Builder

in the
NetBeans

IDE.

06_9780470371732-ch02.indd 3606_9780470371732-ch02.indd 36 7/6/11 6:57 PM7/6/11 6:57 PM

37 Chapter 2: All about Software

To run a program, you might click a toolbar button or choose Run from
a menu. To compile a program, you might not have to do anything at all.
(You might not even have to issue a command. Some IDEs compile your
code automatically while you type it.)

 For help with installing and using an integrated development environment,
see this book’s website.

06_9780470371732-ch02.indd 3706_9780470371732-ch02.indd 37 7/6/11 6:57 PM7/6/11 6:57 PM

38 Part I: Getting Started

06_9780470371732-ch02.indd 3806_9780470371732-ch02.indd 38 7/6/11 6:57 PM7/6/11 6:57 PM

Chapter 3

Using the Basic Building Blocks
In This Chapter
▶ Speaking the Java language: the API and the Language Specification

▶ Understanding the parts of a simple program

▶ Documenting your code

“Все мысли, которые имеют огромные последствия всегда просты.
(All great ideas are simple.)”

–Leo Tolstoy

The quotation applies to all kinds of things — things like life, love, and
computer programming. That’s why this chapter takes a multilayered

approach. In this chapter, you get your first details about Java programming.
And in discovering details, you’ll see the simplicities.

Speaking the Java Language
If you try to picture in your mind the entire English language, what do
you see? Maybe you see words, words, words. (That’s what Hamlet saw.)
Looking at the language under a microscope, you see one word after
another. The bunch-of-words image is fine, but if you step back a bit,
you may see two other things:

 ✓ The language’s grammar

 ✓ Thousands of expressions, sayings, idioms, and historical names

The first category (the grammar) includes rules like, “The verb agrees with
the noun in number and person.” The second category (expressions, say-
ings, and stuff) includes knowledge like, “Julius Caesar was a famous Roman
emperor, so don’t name your son Julius Caesar, unless you want him to get
beat up every day after school.”

07_9780470371732-ch03.indd 3907_9780470371732-ch03.indd 39 7/6/11 6:55 PM7/6/11 6:55 PM

	Java For Dummies, 5th Edition
	About the Author
	Dedication
	Author’s Acknowledgments
	Table of Contents
	Introduction
	How to Use This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting Started
	Chapter 1: All about Java
	What You Can Do with Java
	Why You Should Use Java
	Getting Perspective: Where Java Fits In
	Object-Oriented Programming (OOP)
	What’s Next?

	Chapter 2: All about Software
	Quick-Start Instructions
	What You Install on Your Computer

	Chapter 3: Using the Basic Building Blocks
	Speaking the Java Language
	Checking Out Java Code for the First Time
	Understanding a Simple Java Program
	And Now, a Few Comments

	Part II: Writing Your Own Java Programs
	Chapter 4: Making the Most of Variables and Their Values
	Varying a Variable
	Assignment Statements
	Understanding the Types of Values That Variables May Have
	Displaying Text
	Numbers without Decimal Points
	Combining Declarations and Initializing Variables
	The Atoms: Java’s Primitive Types
	The Molecules and Compounds: Reference Types
	An Import Declaration
	Creating New Values by Applying Operators

	Chapter 5: Controlling Program Flow with Decision-Making Statements
	Making Decisions (Java if Statements)
	Forming Conditions with Comparisons and Logical Operators
	Building a Nest
	Choosing among Many Alternatives (Java switch Statements)

	Chapter 6: Controlling Program Flow with Loops
	Repeating Instructions Over and Over Again (Java while Statements)
	Repeating a Certain Number of Times (Java for Statements)
	Repeating Until You Get What You Want (Java do Statements)

	Part III: Working with the Big Picture: Object-Oriented Programming
	Chapter 7: Thinking in Terms of Classes and Objects
	Defining a Class (What It Means to Be an Account)
	Defining a Method within a Class (Displaying an Account)
	Sending Values to and from Methods (Calculating Interest)
	Making Numbers Look Good
	Hiding Details with Accessor Methods (Why You Shouldn’t Micromanage a Bank Teller)

	Chapter 8: Saving Time and Money: Reusing Existing Code
	Defining a Class (What It Means to Be an Employee)
	Working with Disk Files (A Brief Detour)
	Defining Subclasses (What It Means to Be a Full-Time or Part-Time Employee)
	Using Subclasses
	Overriding Existing Methods (Changing the Payments for Some of Your Employees)

	Chapter 9: Constructing New Objects
	Defining Constructors (What It Means to Be a Temperature)
	More Subclasses (Doing Something about the Weather)
	A Constructor That Does More

	Part IV: Savvy Java Techniques
	Chapter 10: Putting Variables and Methods Where They Belong
	Defining a Class (What It Means to Be a Baseball Player)
	Making Static (Finding the Team Average)
	Experiments with Variables
	Passing Parameters

	Chapter 11: Using Arrays and Collections to Juggle Values
	Getting Your Ducks All in a Row
	Arrays of Objects
	Command Line Arguments
	Using Java Collections

	Chapter 12: Looking Good When Things Take Unexpected Turns
	Handling Exceptions
	Handle an Exception or Pass the Buck
	Finishing the Job with a finally Clause
	Close Those Files!

	Chapter 13: Sharing Names among the Parts of a Java Program
	Access Modifiers
	Classes, Access, and Multipart Programs
	Sneaking Away from the Original Code
	Protected Access
	Access Modifiers for Java Classes

	Chapter 14: Responding to Keystrokes and Mouse Clicks
	Go On . . . Click That Button
	Responding to Things Other Than Button Clicks
	Creating Inner Classes

	Chapter 15: Writing Java Applets
	Applets 101
	Making Things Move
	Responding to Events in an Applet

	Chapter 16: Using Java Database Connectivity
	JDBC and Java DB
	Creating Data
	Retrieving Data

	Part V: The Part of Tens
	Chapter 17: Ten Ways to Avoid Mistakes
	Putting Capital Letters Where They Belong
	Breaking Out of a switch Statement
	Comparing Values with a Double Equal Sign
	Adding Components to a GUI
	Adding Listeners to Handle Events
	Defining the Required Constructors
	Fixing Non-Static References
	Staying within Bounds in an Array
	Anticipating Null Pointers
	Helping Java Find Its Files

	Chapter 18: Ten Websites for Java
	This Book’s Website
	The Horse’s Mouth
	Finding News, Reviews, and Sample Code
	Looking for Java Jobs
	Everyone’s Favorite Sites

	Index

